4 research outputs found

    The support of multipath routing in IPv6-based internet of things

    Get PDF
    The development of IPv6-based network architectures for Internet of Things (IoT) systems is a feasible approach to widen the horizon for more effective applications, but remains a challenge. Network routing needs to be effectively addressed in such environments of scarce computational and energy resources. The Internet Engineering Task Force (IETF) specified the IPv6 Routing Protocol for Low Power and Lossy Network (RPL) to provide a basic IPv6-based routing framework for IoT networks. However, the RPL design has the potential of extending its functionality to a further limit and incorporating the support of advanced routing mechanisms. These include multipath routing which has opened the doors for great improvements towards efficient energy balancing, load distribution, and even more. This paper fulfilled a need for an effective review of recent advancements in Internet of Things (IoT) networking. In particular, it presented an effective review and provided a taxonomy of the different multipath routing solutions enhancing the RPL protocol. The aim was to discover its current state and outline the importance of integrating such a mechanism into RPL to revive its potentiality to a wider range of IoT applications. This paper also discussed the latest research findings and provided some insights into plausible follow-up researches

    Dynamic-RPL: Enhancing RPL-Based IoT Networks with Effective Support of Dynamic Topology Management

    No full text
    The inherent characteristics and limitations of Internet of Things networks make it hard to avoid facing adverse network conditions. Addressing high performance in extreme situations still remains a challenge even for a standardized routing protocol like the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL). No effective support is provided by the design of RPL to guarantee high network performance in the presence of such challenging conditions. To address such a compelling need, an innovative approach referred to as Dynamic-RPL is proposed in this research paper. With only limited in-protocol modifications to RPL, Dynamic-RPL provides effective support of dynamic topology management in a distributed manner. Seamless optimization of network topology is realized with dynamic topological adjustments to sustain high network performance and stability. It incorporates modified RPL topology establishment, customized RPL objective function and parent selection, a new dynamic topology management algorithm, and additional inter-routing support. The evaluation results demonstrated the ability of Dynamic-RPL to maintain high overall network performance irrespective of the adversity of ongoing network conditions. Considering varying-scale experimental setups, high QoS performance and low energy consumption were achieved without much increase in network overhead. Dynamic-RPL succeeded in adapting responsively with little time required to have the network performance successfully restored and network topology completely converged

    A Multidimensional Internet of Things Testbed System: Development and Evaluation

    No full text
    The technological breakthrough of the Internet of Things (IoT) drives the emergence of a wide scope of smart IoT solutions in different domains. Advancing the different technological aspects of these solutions requires effective IoT implementations and experimentations. This is widely addressed following low-cost and scalable methods such as analytical modeling and simulation. However, such methods are limited in capturing physical characteristics and network conditions in a realistic manner. Therefore, this paper presents an innovative IoT testbed system which facilitates practical experimentation of different IoT solutions in an effective environment. The testbed design was developed towards a general-purpose multidimensional support of different IoT properties including sensing, communication, gateway, energy management, data processing, and security. The implementation of the testbed was realized based on integrating a set of robust hardware components and developing a number of software modules. To illustrate its effectiveness, the testbed was utilized to experiment with energy efficiency of selected IoT communication technologies. This resulted in lower energy consumption using the Bluetooth Low Energy (BLE) technology compared to the Zigbee and 6LoWPAN technologies. A further evaluation study of the system was carried out following the Technology Acceptance Model (TAM). As the study results indicated, the system provides a simple yet efficient platform for conducting practical IoT experiments. It also had positive impact on users’ behavior and attitude toward IoT experimentation

    A Blockchain-Centric IoT Architecture for Effective Smart Contract-Based Management of IoT Data Communications

    No full text
    The exponential growth of the Internet of Things (IoT) is being witnessed nowadays in different sectors. This makes IoT data communications more complex and harder to manage. Addressing such a challenge using a centralized model is an ineffective approach and would result in security and privacy difficulties. Technologies such as blockchain provide a potential solution to enable secure and effective management of IoT data communication in a distributed and trustless manner. In this paper, a novel lightweight blockchain-centric IoT architecture is proposed to address effective IoT data communication management. It is based on an event-driven smart contract that enables manageable and trustless IoT data exchange using a simple publish/subscribe model. To maintain system complexity and overhead at a minimum, the design of the proposed system relies on a single smart contract. All the system operations that enable effective IoT data communication among the different parties of the system are defined in the smart contract. There is no direct blockchain–IoT-device interaction, making the system more useable in wide IoT deployments incorporating IoT devices with limited computing and energy resources. A practical Ethereum-based implementation of the system was developed with the ability to simulate different IoT setups. The evaluation results demonstrated the feasibility and effectiveness of the proposed architecture. Considering varying-scale and varying-density experimental setups, reliable and secure data communications were achieved with little latency and resource consumption
    corecore